
CN Chapter 2

CT The road to equilibrium

A 2.1 The time evolution

We found in the previous section, that a general quantum mechanical system is de-

scribed by its density operator. Physical systems evolve in time, and this evolution

should be contained in their density or state operator. We have arrived here to the

central problem in Statistical Mechanics, since this time evolution should describe the

irreversibility that we observed in macroscopic phenomena. In particular, if we pre-

pare a system in an arbitrary initial state, the time evolution will drive the system to

equilibrium. Since relaxation is an irreversible process, this poses the conundrum of

how to describe this phenomenon through a dynamics which is time reversible. Boltz-

mann solved this problem using his kinetic equation (Boltzmann equation), but his
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procedure had a hidden breaking of reversibility., which was named �molecular chaos�

(Stosszahlansatz). Boltzmann interpreted his results in terms of most probable distri-

butions, arguing that an actual system consists of a large number of molecules, and

in the thermodynamic limit (in�nite size), reversible paths are vanishingly rare. This

intuition seems to be correct, but it has not been fully elucidated and still continues

to be considered as an open problem, not solved by the advent of Quantum Mechan-

ics. In what follows, we discuss the dynamics of a quantum system through the time

evolution of its density operator. It was not explicitly stated, but the de�nition of �

was implied to be formulated in the Schödinger�s picture at a �xed time t0. Within

the above framework, dynamics is contained in state kets, which evolve following the

Schrödinger equation:

i~
@j (i)(t; t0) >

@t
= Hj (t; t0) > ; (2.1)

where H is the Hamiltonian, and the evolving kets are written as j (t; t0) >. This

results in a time evolution for � which is closely related to the Schrödinger equation,

since the weighs of the mixture fwig are �xed and de�ned at the initial time t0. It

follows that � is written as:

�(t; t0)�
X
i

wi j (i)(t; t0) ><  (i)(t; t0)j ;

and taking the time derivative we get:

i~
@�(t; t0)

@t
=
X
i

wi

(
i~
@j (i)(t; t0) >

@t
<  (i)(t; t0)j + j (i)(t; t0) > i~

@ <  (i)(t; t0)j
@t

)
:
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Using (2.1), it can be cast to the form:

i~
@�(t; t0)

@t
=

X
i

wi

n
Hj (i)(t; t0) ><  (i)(t; t0)j � j (i)(t; t0) ><  (i)(t; t0)j H

o
=

= H�� �H = [H;�] = � [�;H] ; (2.2)

where the symbol [A;B] � AB�BA is the commutator of A and B. Equation (2.2) is

the quantum analog of Liouville theorem. It was found by several authors, but we call

it as the Liouville-von Neumann equation. It can be rewritten in the more suggestive

form:

@�(t; t0)

@t
+
1

i~
[�;H] = 0 ; (2.3)

which closely resembles the classical Liouville theorem, with the correspondences:

�(t)! �(q; p; t) ;

1

i~
[:::; :::]! f:::; :::g :

(2.4)

In fact, Dirac [1] studying the classical limit of commutators, noted that they sat-

isfy the same algebra as Poisson brackets. Indeed, one alternative way of stating the

correspondence principle is written as:

lim
~!0

1

i~
[A;B] = fA;Bg ;

where A and B are the classical functions associated with the quantum operators A

and B. The correspondence can be made more precise, if we pass to the Heisenberg

picture, with the unitary transformation

�H(t) = exp

�
i

~
Ht

�
�(t) exp

�
� i
~
Ht

�
; (2.5)

39



CHAPTER 2 � MANUSCRIPT

with t0 = 0, for simplicity. Note that �H(t) has now two types of time dependences,

one is the explicit dependence and the other is due to the dynamical variables, that

now depend on time. Then, in the Heisenberg picture we get:

d�H(t)

dt
=
@�H(t)

@t
+
1

i~
[�H(t);H] = 0 ;

i.e. the total time derivative of � in the Heisenberg picture vanishes due to relations

(2.3) and (2.5). That means that �H(t) is a constant, which is the exact quantum

analog of the classical Liouville theorem of relation (1.30). Since averages of observables

are traces, they are invariant under unitary transformations, and we have the useful

identity:

[A] (t) = Tr [�(t)A] = Tr

�
exp

�
� i
~
Ht

�
�H(t) exp

�
i

~
Ht

�
A

�
=

= Tr

�
�H(t) exp

�
i

~
Ht

�
A exp

�
� i
~
Ht

��
= Tr [�H(0)AH(t)] ;

where, in Heisenberg picture, the time dependence is contained in the observableAH(t),

and since the state operator is constant, we can refer it to the initial condition �H(0).

Going back to the Shrödinger picture, we observed that the time evolution of � is

unitary. In fact, if we write

j (i)(t; t0) >= exp
�
� 1
i~
H (t� t0)

�
j (i)(t0; t0) >� U (t; t0) j (i)(t0; t0) > ;
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with U (t; t0) being the time evolution operator, we get

�(t; t0) =
X
i

wi j (i)(t; t0) ><  (i)(t; t0)j =

=
X
i

wiU (t; t0) j (i)(t0; t0) ><  (i)(t; t0)jUy (t; t0) =

= U (t; t0)�(t0; t0)U
y (t; t0) : (2.6)

In particular, we observed that the normalization property is preserved:

Tr [�(t; t0)] = Tr
�
U (t; t0)�(t0; t0)U

y (t; t0)
�
= Tr

�
�(t0; t0)U

y (t; t0)U (t; t0)
�
=

= Tr [�(t0; t0)] = 1 :

We can also demonstrate the following theorem:

Theorem 8 The time evolution of � does not change the type of mixture of the en-

semble

In fact, we easily calculate this property:

Tr
�
�2(t; t0)

�
= Tr

�
U (t; t0)�

2(t0; t0)U
y (t; t0)

�
= Tr

�
�2(t0; t0)U

y (t; t0)U (t; t0)
�
=

= Tr
�
�2(t0; t0)

�
;

showing that the type of mixture is also preserved by the dynamics. This result is a

big obstacle to our program, for it means that quantum dynamics cannot describe a

relaxation process: unitary evolution is time reversible. This is the quantum version of
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the same problem encountered by Boltzmann in his theory of gases. The equilibrium

situation is characterized by the condition

@�(t; t0)

@t
=
1

i~
[H;�] = 0 ; (2.7)

which can be ful�lled by speci�c ensembles, but we do not know in general how the

system approaches equilibrium for an arbitrary initial condition. Condition (2.7) is

satis�ed if � is a function of the Hamiltonian operator,

� = � (H) ;

which is the case of several equilibrium distributions, but those solutions are frozen in

time (they represent eternal equilibrium).

Let us analyze equation (2.2) in more detail. We work in a given representation

with the density matrix �nm �< nj�jm>. Assume that initially, the density matrix is

brought to the diagonal form:

�nm (0) = Pn �mn ; (2.8)

and we analyze locally the behavior of the Liouville-von Neumann equation:

i~
@�nm
@t

����
t=0

= < nj [H;�(0)] jm >=
X
j

�
Hnj�jm(0)� �nj(0)Hjm

	
=

= Hnm (Pm � Pn) : (2.9)

i) For diagonal terms, m = n, we get:

i~
@�nn
@t

����
t=0

= 0 ;

42



CHAPTER 2 � MANUSCRIPT

that is, diagonal terms do not vary in �rst order, which is what we want near

equilibrium;

ii) unfortunately, non diagonal terms (m 6= n) yield in general

i~
@�nm
@t

����
t=0

6= 0 ;

which means that they will vary in �rst order, rendering the matrix non-diagonal.

An exceptional instance is the so called equiprobable case, with equal probabilities:

Pm = Pn = ::: = Pj = ::: = P ; (2.10)

for all j, which makes (2.9) to vanish for all matrix elements, and represents a

stationary case.

The above discussion allows us to formulate the central problem in a slightly

di¤erent way: given an arbitrary initial condition, which may be (2.8) or any other,

relaxation to equilibrium should lead us to the equiprobable case, where the density

matrix is proportional to the identity:

�(t!1) =P

0BBBBBBBBBBBBBB@

1 0 ::: 0 0

0 ::: 0 0 0

::: 0 1 0 0

0 0 0 ::: 0

0 0 ::: 0 1

1CCCCCCCCCCCCCCA
: (2.11)
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Normalization implies

P =
1

D ;

where D is the dimension of the Hilbert space. Such an ensemble is called random or

ensemble of maximal mixture, for reasons that will be fully explained afterwards. We

have also seen that the above process is not described by the Liouville-von Neumann

equation. Two important tasks are left: one is quantify the degree of mixture; the

second, following Boltzmann procedure, is to realize that actual macroscopic systems

are constituted by a large number of particles, implying that statistical arguments are

essential to describe relaxation to equilibrium. But, in �rst place we have to discuss

the physical meaning of equilibrium itself. This is done in the next subsection.

A 2.2 Thermal equilibrium

The notion of �equilibrium�is a subtle one, which depends on time scale. It means that

when we speak of equilibrium, we must explicitly specify the corresponding observa-

tional time, since a physical system often displays di¤erent kinds of thermal equilibrium

at di¤erent time scales, when di¤erent couplings with the environment are active. Us-

ing Feynman�s informal style [2], we say that in thermal equilibrium �all the fast things

have happened and all the slow things not�. The meaning of �fast� and �slow� implies

the existence of di¤erent scales of relaxation times. A typical example is presented in
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[3], as a simple quotidian experiment of pouring boiling water into a cold cup. This

is an example of a non-equilibrium state. Within some seconds, the system water

plus cup will acquire a common temperature and the volume of water will not change

signi�cantly at this time scale. We may say that the system cup + water is in equi-

librium. For longer times, the temperature will change and some of the liquid water

will evaporate, changing the water volume in the cup. Within times of the order of an

hour, the temperature will be equal to the room temperature and the water volume

will become stable. Now we say that the system is in thermal equilibrium with the

local surrounding. Within a few days, the water begins to saturate the air of the room,

and again the system will not be in an equilibrium state. The whole process de�nes a

hierarchy of time scales, which describes di¤erent types of equilibrium states. Usually,

in models, we do not include the slow degrees of freedom, working with the notion of an

ideal equilibrium state that remains as such at in�nite times, meaning that the system

is completely isolated from the environment. But in real systems this is not the case,

since external couplings, however small, always exist.

The discussion of the equilibrium state is also related to the concept of ergod-

icity. The term ergodicity was coined by Boltzmann when working out the foundation

of Statistical Mechanics, meaning that all points of phase space available to the system

(satisfying the macroscopic constrains), are visited after a long period of time. As a

consequence, all microstates of the ensemble are treated as equally probable, which is
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the fundamental postulate that leads to the microcanonical ensemble. But depending

on the observation time, di¤erent regions of phase space are visited, and true ergodicity

is e¤ectively attained at t!1. The ergodic hypothesis is not able to establish typical

relaxation times for equilibrium states and most systems are known to be non-ergodic.

In a typical phase transition, some symmetry is spontaneously broken and this is ac-

companied by a breaking of ergodicity, i.e., the macroscopic system is stuck within a

region which is part of the whole available phase space [3].

In this monograph, we will not pursue the approach of deriving Statistical

Mechanics from the ergodic theorem. Instead, following Pauli [4], we will try to establish

a Master Equation to describe the time evolution of a system approaching equilibrium

[5]. In principle, this approach allows for the calculation of relaxation times and holds

greater promise for a satisfactory derivation of Statistical Mechanics. More on this

later.

A 2.3 Quantifying the degree of mixture

A pure ensemble is characterized by a single ket-state. This is the maximal information

that one can have of a quantal system. Part of this information is lost when one

introduces mixture of states. In the case shown in the example of 1.2 for spin 1=2,

the pure ensemble displays maximal polarization. As long as one considers mixed

ensembles, the polarization degrades and �nally vanishes for the random ensemble
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(maximum mixture). We would like to measure this degree of randomness, or the loss

of information caused by the mixture. This loss of information resembles instances

described by the classical probability theory. Suppose that our mixed ensemble given

by the density operator

� =
X
i

wi j (i) ><  (i)j

contains a big number of similar systems, that we called N (for the ideal ensemble,

N!1). The pure state j (i) > is occupied by Ni = wiN systems, since wi is by

de�nition the fraction of systems with wave function j (i) >. We would like to calculate

the number of di¤erent ways that the N systems of the ensemble can be distributed

among the pure states ( (1);  (2); ::: (i) :::), given that Ni systems occupy the state

 (i)(i = 1; 2; :::), with the proviso

X
i

Ni = N
X
i

wi = N :

The bigger this number, the bigger the degree of randomness of the ensemble. This

number correspond to a multinomial coe¢ cient given by:�
N
fNig

�
=

N!
N1!N2!:::Ni!:::

;

saying that from the total number of permutations, one has to discount internal permu-

tations. Since the above is a big number, one takes the logarithm and uses the Stirling

approximation lnN ! � N lnN , for large N :

ln

�
N
fNig

�
� N lnN�

X
i

Ni lnNi = �N
X
i

wi lnwi :
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The quantity N�1 ln
� N
fNig
�
is independent of N, and can be used to measure the mixture:

De�nition 9 Information entropy, E

E � �
X
i

wi lnwi : (2.12)

1. In �rst place, we note that E vanishes for a pure ensemble.

2. Secondly, we may ask what kind of mixture yields maximum entropy. This is

a constrained variational problem, since the numbers fwig satisfy the condition

(1.3), X
i

wi = 1 :

So, we maximize the �functional�

E + �
X
i

wi

where � is a Lagrange multiplier associated with (1.3). The variation process

yields:

0 = �

 
E + �

X
i

wi

!
=
X
i

�wi (�� 1� lnwi) ;

and since variations �wi are considered as independent, we obtain:

lnwi = �� 1 ;

48



CHAPTER 2 � MANUSCRIPT

independent of the subindex i, that is wi = w for all i = 1; 2; :::; N0, where N0 is

the number of states of the mixture. Condition (1.3) now yields

X
i

wi = wN0 = 1 ;

with the solution

w1 = w2 = ::: = wi = ::: =
1

N0
;

which we have called before as the �random case�, corresponding to the maximum

value of the information entropy:

Emax = lnN0 : (2.13)

3. The value of E �depends on the observer�, since the decomposition (1.7) of � in

pure states is not unique, and we may have di¤erent values of E associated with

the same density operator.

A representation of � that is unique (except for permutations of the basis

vectors), is given in terms of its eigenvalues and eigenvectors:

�j�i >= �ij�i > ;

with the kets fj�i >g forming and orthonormal basis. Note that some of the eigenvalues

�i may be zero. This mixture is written as:

� =
X
i

�ij�i >< �ij ; (2.14)
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where the index i runs over the dimension os the linear space. Relation (2.14) suggests

a new de�nition of the entropy:

De�nition 10 von Neumann entropy (or simply, entropy), �

� � �
X
i

�i ln �i : (2.15)

Note that � is an intrinsic property of the density operator, and since � is in

diagonal form, we may write:

� � �
X
i

�i ln �i = �Tr (� ln�) = �[ln�] : (2.16)

The von Neumann entropy shares some properties with the information entropy. A

pure state has no entropy and the random mixture (2.11) has the maximum value of �

(same proof as above):

�max = lnD ;

where D is the dimension of the Hilbert space. Since diagonal elements of � (and

thus its eigenvalues) are interpreted as probabilities, the maximum value of the entropy

correspond to the equiprobable case (2.10), where � is stationary (equilibrium).

The following theorem is stated here without proof [6]:

Theorem 11 The von Neumann entropy is the smallest of all mixing entropies,
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E (fwig) > �(�) :

It follows that (2.14) is the least random of all possible decomposition of the density

operator.

EXP Example 1

Consider a random mixture of two states j'1 > and j'2 >, which

are normalized but are not orthogonal. Let the overlap between the

two state be < '1j'2 >= m. We calculate the information entropy

E and the entropy �. We get:

E = �1
2
ln
1

2
� 1

2
ln
1

2
= ln 2 :

To calculate �, we need to obtain the eigenvalues of �. A simple

calculation leads to

�1;2 =
1� jmj
2

;

so that � is given by:

� = �1 + jmj
2

ln

�
1 + jmj
2

�
� 1� jmj

2
ln

�
1� jmj
2

�
� ln 2 ;

which is displayed in Fig.1, below:
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Fig.1. von Neumann entropy as a function of the overlap of quantum states.

Note the limit � ! ln 2, for m ! 0, and that �(jmj) is a

decreasing function of jmj in the interval 0 � jmj < 1. �

B 2.3.1 The extensive property of the von Neumann entropy

The entropy of a system composed of two uncorrelated parts is additive. This pe-

culiarity is called �extensive property�. We proceed to its demonstration. Since the

subsystems are uncorrelated, observables relative to di¤erent subsystems commute. If

we assume that �(1) and �(2) are the Density Operators of the two subsystems, states

of the whole system are obtained as a tensor product of both operators, as shown in
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Section 1.3:

� = �(1) 
 �(2) ;

and the dimension of � is the product of the dimensions of �(1) and �(2). Let us write as

�
(1)
�� and �

(2)
�� the matrix elements of the corresponding Density Matrices. Then, matrix

elements of � are obtained with pairs of indexes in the form

���;�� = �
(1)
���

(2)
�� ;

where (�; �) run over the dimension of �(1), and (�; �) over the dimension of �(2). To

calculate the entropy, we need all the matrices given in diagonal form. Since the systems

are uncorrelated, �(1) and �(2) can be diagonalized simultaneously, and the total � also

results diagonal, with:

���;�� = �(1)���
(2)
�� :

Then it follows

�Tr (� ln�) = �
X
�;�

���;�� ln ���;�� = �
X
�;�

�(1)���
(2)
��

�
ln �(1)�� + ln �

(2)
��

�
=

= �
X
�

�(1)�� ln �
(1)
�� �

X
�

�(2)�� ln �
(2)
�� ;

where we have used the normalization condition Tr�(1) = Tr�(2) = 1. The above

equality means that

� = �(1) + �(2) ;

which is the additive property. �
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